Машинное зрение (Machine Vision MV) - это применение компьютерного зрения для промышленности и производства. Областью интереса машинного зрения являются цифровые устройства ввода/вывода и компьютерные сети, предназначенные для контроля производственного оборудования. 
Областью интереса машинного зрения, как инженерного направления, являются цифровые устройства ввода-вывода и компьютерные сети, предназначенные для контроля производственного оборудования, таких как роботы-манипуляторы или аппараты для извлечения бракованной продукции. Машинное зрение является подразделом инженерии, связанное с вычислительной техникой, оптикой, машиностроением и промышленной автоматизацией.
Одно из наиболее распространённых приложений машинного зрения — инспекции промышленных товаров, таких как полупроводниковые чипы, автомобили, продукты питания и лекарственные препараты. Люди, работавшие на сборочных линиях, осматривали части продукции, делая выводы о качестве исполнения. Системы машинного зрения для этих целей используют цифровые и интеллектуальные камеры, а также программное обеспечение, обрабатывающее изображение для выполнения аналогичных проверок.
 
Компоненты системы машинного зрения
Типовое решение системы машинного зрения включает в себя несколько следующих компонентов:
  • Одна или несколько цифровых или аналоговых камер (черно-белые или цветные) с подходящей оптикой для получения изображений
  • Программное обеспечение для изготовления изображений для обработки. Для аналоговых камер это оцифровщик изображений
  • Процессор (современный ПК c многоядерным процессором или встроенный процессор, например — ЦСП)
  • Программное обеспечение машинного зрения, которое предоставляет инструменты для разработки отдельных приложений программного обеспечения.
  • Оборудование ввода-вывода или каналы связи для доклада о полученных результатах
  • Умная камера: одно устройство, которое включает в себя все вышеперечисленные пункты.
  • Очень специализированные источники света (светодиоды, люминесцентные и галогенные лампы и т. д.)
  • Специфичные приложения программного обеспечения для обработки изображений и обнаружения соответствующих свойств.
  • Датчик для синхронизации частей обнаружения (часто оптический или магнитный датчик) для захвата и обработки изображений.
  • Приводы определённой формы, используемые для сортировки или отбрасывания бракованных деталей.
Методы обработки
Коммерческие пакеты программ для машинного зрения и пакеты программ с открытым исходным кодом обычно включают в себя ряд методов обработки изображений, таких как:
  • Счетчик пикселей: подсчитывает количество светлых или темных пикселей
  • Бинаризация: преобразует изображение в серых тонах в бинарное (белые и черные пиксели)
  • Сегментация: используется для поиска и/или подсчета деталей
  • Поиск и анализ блобов: проверка изображения на отдельные блобы связанных пикселей (например, черной дыры на сером объекте) в виде опорных точек изображения. Эти блобы часто представляют цели для обработки, захвата или производственного брака.
  • Надежное распознавание по шаблонам: поиск по шаблону объекта, который может быть повернут, частично скрыт другим объектом, или отличным по размеру.
  • Чтение штрихкодов: декодирование 1D и 2D кодов, разработанных для считывания или сканирования машинами
  • Оптическое распознавание символов: автоматизированное чтение текста, например, серийных номеров
  • Измерение: измерение размеров объектов в дюймах или миллиметрах
  • Обнаружение краев: поиск краев объектов
  • Сопоставление шаблонов: поиск, подбор, и/или подсчет конкретных моделей
  • В большинстве случаев, системы машинного зрения используют последовательное сочетание этих методов обработки для выполнения полного инспектирования. Например, система, которая считывает штрихкод может также проверить поверхность на наличие царапин или повреждения и измерить длину и ширину обрабатываемых компонентов.
 
 

Нет прав для добавления комментария